Linear evolution of sandwave packets

نویسندگان

  • P. C. Roos
  • P. Blondeaux
  • S. J. M. H. Hulscher
  • G. Vittori
چکیده

[1] We investigate how a local topographic disturbance of a flat seabed may become morphodynamically active, according to the linear instability mechanism which gives rise to sandwave formation. The seabed evolution follows from a Fourier integral, which can generally not be evaluated in closed form. As numerical integration is rather cumbersome and not transparent, we propose an analytical way to approximate the solution. This method, using properties of the fastest growing mode only, turns out to be quick, insightful, and to perform well. It shows how a local disturbance develops gradually into a sandwave packet, the area of which increases roughly linearly with time. The elevation at the packet’s center ultimately tends to increase, but this may be preceded by an initial stage of decrease, depending on the spatial extent of the initial disturbance. In the case of tidal asymmetry, the individual sandwaves in the packet migrate at the migration speed of the fastest growing mode, whereas the envelope moves at the group speed. Finally, we apply the theory to trenches and pits and show where results differ from an earlier study in which sandwave dynamics have been ignored.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.

Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...

متن کامل

EFFECT OF COUNTERPROPAGATING CAPILLARY GRAVITY WAVE PACKETS ON THIRD ORDER NONLINEAR ‎‎E‎VOLUTION EQUATIONS IN THE PRESENCE OF WIND FLOWING OVER WATER

Asymptotically exact and nonlocal third order nonlinear evolution equations are derivedfor two counterpropagating surface capillary gravity wave packets in deep water in thepresence of wind flowing over water.From these evolution equations stability analysis ismade for a uniform standing surface capillary gravity wave trains for longitudinal perturbation. Instability condition is obtained and g...

متن کامل

Charge gradient effects on modulated dust lattice wave packets in dusty plasma crystals

  Nonlinear Dust lattice modes are studied in a hexagonal two-dimensional dusty plasma lattice, in presence of charge gradient of dust particles. In this lattice, such gradients affect nonlinear behavior of dust lattice waves. The amplitude modulation of off-plane transverse dust lattice wave packets is investigated considering the anisotropy of interactions, caused by the height-dependent char...

متن کامل

Sandwave migration in Monterey Submarine Canyon, Central California

Repeated high-resolution multibeam bathymetric surveys from 2002 through 2006 at the head of theMonterey Submarine Canyon reveal a sandwave field along the canyon axis between 20 and 250 m water depth. These sandwaves range in wavelength from 20 to 70 m and 1 to 3 m in height. A quantitative measure was devised to determine the direction of sandwave migration based on the asymmetry of their pro...

متن کامل

Cross ow-Vortex Breakdown on Swept Wings: Correlation of Nonlinear Physics

The spatial evolution of cross ow-vortex packets in a laminar boundary layer on a swept wing are computed by the direct numerical simulation of the incompressible NavierStokes equations. A wall-normal velocity distribution of steady suction and blowing at the wing surface is used to generate a strip of equally spaced and periodic disturbances along the span. Three simulations are conducted to s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005